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1 Introduction
According to the particle conception, visible light consists of photons with spin h/2π. In fact, the spin of
visible light can not only be verified by spectroscopic means but also directly by macroscopic measurement
of angular momentum. (Such experiments have been conducted especially by R.A. Beth [1] and also by
R. Dasgupta and P.K. Gupta [10].)
However, an experimental verification of the photon spin of electromagnetic radiation of very large wave
lengths has not yet been accomplished.
Nevertheless today the quantity of the photon spin is considerend constant throughout all wave lengths.
The question is if the photon spin with growing wave lengths and with a photon mass approaching zero
can retain the constant value h/2π.
For this reason we set ourselves the goal to measure the spin of radio wave photons.
Therefore we also had to use a macroscopic measurement method of the angular momentum (scattering
of circular polarized radio waves by a thin aluminum disc), since methods of measurement using atomic
physics are not possible at very large wave lengths.
Finally we further refer to the experiments of the past decades with satellites: Presupposed a frequency-
independent photon spin there should be observable corresponding angular momentum effects on circular
polarized transmitting satellites.
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2 Fundamentals of the
macroscopic spin
measurement of polarized
photons

2.1 Theoretical fundamentals
To begin with, every photon according to the present state of knowledge carries the spin respectively
angular momentum s = h

2π and has the energy Ep = hν.
We imagine a plane element of area A (lateron infinitely small), through which passes perpendicularly a
plane electromagnetic wave of constant intensity.
Hereby conventionally there is applied the term energy flux density or power density L which
indicates how much energy passes through the unit of area in the unit of time.
(Lateron L will be expressed by the Poynting vector.)
Herefrom one can calculate the photon flux density P which means the number n of photons which
pass through the unit of area in the unit of time at fixed frequency ν:

P =
L

Ep
=

L

hν
(2.1)

photon flux density = power density · 1
hν

From now on we only consider photons having the same spin directions, which corresponds to a circular
polarized radiation!
In doing so it’s important for us to know, which total angular momentum I will be transported during
time t through the area by the photons that pass through it. It holds for the absolute value of the angular
momentum:

I = P · s · t ·A =
L

hν
· h

2π
· t ·A =

L

2πν
· t ·A (2.2)

The angular momentum transported by the photons in the unit of time can be described by an angular
momentum flux J , for which holds: J = I

t = P · s ·A, also:

angular momentum flux = photon flux · h2π

or accordingly:
angular momentum flux density = photon flux density · h2π

We postulate moreover a photon current which impinges in unit of time perpendicularly on an area A
and which will be absorbed or will be emitted perpendicularly by this area.
For this photon current F holds: F = P ·A
Hence it holds for the absolute value of the torsional moment D upon the area, which is caused by the
absorbed or emitted photon current:

torsional moment = angular momentum flux = photon flux · h2π
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or:

D =
I

t
=
LA

2πν
= F · h

2π
= P ·A · h

2π
(2.3)

2.2 Polarization of the photons of radio
waves

The spins of the photons are measurable macroscopically if they add to a collective angular momentum.
This requires a polarization of the photons meaning the spins must all have the same direction.
In the particle conception a polarized photon radiation corresponds to a circular polarized electromagnetic
wave in the wave conception. ([1], [2]).

2.3 Principle of the macroscopic
measurement of the photon spin

In order to achieve an additional effect of all photon spins there has to be produced a circular polarized
wave by a suited transmitting antenna.
On the one hand the photons of this circular polarized wave when scattered at a thin metall disc can
exert an angular momentum on this disc which is accessible to macroscopic measurement.
On the other hand the transmitting antenna experiences the corresponding opposite angular momentum
of all the emitted photons, which also is accessible to macroscopic measurement.
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3 Characterization and
production of circular
polarized radio waves

3.1 Characterization of circular polarized
radio waves

Two dipoles perpendicular to each other will be activated with sine oscillations of equal intensity and
with an angular phase shift of 90◦ (see Fig. 3.1).
We first inspect the radiation of the dipole system perpendicular to the plane of the system. Superposition
of the vectors of the field strengths of both dipoles results in a circular polarized electromagnetic wave
([1], [2], [3], [4], [5]).
When the vectors of the electric field strengths ( ~E-vectors) of the emitted wave form a right-handed
screw, this wave is called σ+-wave.
When conversely the ~E-vectors of the emitted wave form a left-handed screw, then this wave is called
σ−-wave. (σ−-light).

3.2 Generation of circular polarized radio
waves

In our case (Fig. 3.1) the dipoles may be activated in a way that the phase of the horizontal dipole
precedes the phase of the vertical dipole by 90◦. We first inspect the radiation of the dipole system in the
x-direction. Hence the radiation takes place in the manner of a right-handed screw, there is a σ+-wave.
If one inspects the radiation into the opposite direction (−x-direction) one can see that the radiation
takes place in the manner of a left-handed screw (σ−-wave).
Alltogether it is important that the spin vectors of all the photons are equally oriented in both directions
of the radiation of the dipole system. The whole transmitted angular momentum consists consequently
of the sum of the spins of all transmitted photons.
Hence according to the law of conservation of angular momentum it can be derived that the circular
polarized radiating dipole system or generally every circular polarized radiating antenna must receive the
opposite angular momentum of the radiated photons (see chapters 8 and 9).
However, the polarized wave is not only radiated perpendicular to the plane of the dipole system (as
schematically presented in Fig. 3.1), but correspondingly to the radiation pattern into all directions.
Depending on the angle of radiation there remains only an elliptical polarization of variable quantity
(view chapter 4).
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Figure 3.1:
Direction-dependend helicity of the circular polarized radiation of the dipole
system
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3.3 Macroscopic measurement of the
photon spin

In the corpuscular conception the electromagnetic radiation consists of solitary photons with an angular
momentum of h/2π respectively. A light-beam with σ+-polarization has only photons with angular
momentum respectively spin-vectors facing in the direction of light propagation, a light-beam with σ−-
polarization has only photons with spin in opposition to the direction of light propagation ([1],[2]).
The knowledge of the quantity of the spin and his orientation has almost exclusively been acquired by
experiments of atomic physics in the visible and adjacent spectrum by spectroscopy. The only attempt
to acquire that knowledge by macroscopic mechanical measurement was the famous work of R.A. Beth
[1].
Other than that there have been no further efforts in this respect.
In analogy to Beth’s experiment there have been attempts to measure the spin with microwaves, but
these experiments were carried out under near-field conditions where only virtual photons exist working
like an inductor motor and thus producing meaningless results.
Altogether except Beth’s experiments there were no investigations on the photon spin of real free photons
in the far field of an electromagnetic wave, especially not with low energy photons at large wave lengths.
For instance the photons of 2m-UKW-waves (as in our experiment) have an energy and a mass which
is only about one billionths of the photons of visible light! Nevertheless by definition (without any
experimental verification) they carry the same spin as the photons of visible light.
Finally we further mention an experiment for qualitativ utilization of the photon spin of visible light: An
elliptical polarized laser beam is used for angular momentum transfer on micro particles [10].
These were brought to rotation in a fluid under the practical aspect of construction of nano motors.
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4 Measurement of the photon
spin by scattering of a
circular polarized radio wave
at a small aluminum disc

A radio wave perpendicularly impinging on a small aluminum disc is scattered at the disc. The configu-
ration of the scattered radio wave depends consequently on the dimension of the scattering disc. When
the dimension of the disc is very small compared to the wave length, then the scattered radiation of a
linear polarized radio wave has the pattern of a dipole radiation. ([1], [2], [6], [7], [8] and [12]). When the
impinging wave is polarized circularly, then the scattered radiation has the radiation of a dipole system
of two dipoles perpendicular to each other which are activated with a phase shift of 90◦.
Moreover this scattered radiation has equal intensity into the forward and backward direction and the
angle distribution of the scattered radiation corresponds to the well known radiation law for dipole an-
tennas.
In our case the diameter of the scattering disc (thin aluminum foil) was 9cm and the wave lengths of the
used circular polarized radiation were 2m and 0.7m.
With a relation of disc-diameter to wave length of about 0.04 respectively 0.13 the condition for a scattered
radiation according to dipole pattern is fulfilled ([1], [6], [7], [8] und [12]).

4.1 Angular momentum transference of the
radio wave to the small aluminum disc

Altogether there acts on the aluminum disc the angular momentum of the incident photons less the
angular momentum of the scattered photons (see Fig. 4.1).
The projections of all the spins of the scattered photons onto the plane of the disc cancel mutually (the
scattering is rotation symmetric to the axis of the transmitting antenna) so that there remains exclusively
an angular momentum perpendicular to the plane of the disc in the direction of the axis of the antenna.

4.1.1 Angular momentum of incident radiation
The geometric conditions for the radiation of the antenna incident on the aluminum disc have been chosen
in such a way that the radiation impinges practically perpendicularly and (because of the small diameter
of the disc) parallel on the disc.
As usual the radiation is for technical reasons not purely circular polarized , there is rather an elliptical
polarized radiation (further details of the transmitting antenna see chapter 5).
In consideration of the ellipticity one can split the radiation into a purely circular and a purely linear
part. The circular part then comprises only photons of the same spin orientation perpendicular to the disc.

Annotation:
In the photon conception the intensity of the photons impinging on the disc is determined by its geo-
metrical area A. On the other hand in the electromagnetic wave conception in high frequency technique
there is the so called effective area. This fictitious area corresponds to the intensity which the receiving
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antenna (in our case the disc) takes out of the electromagnetic wave.
One can show that in our case with our dimensions the geometrical area A of the photon conception is
equal to the effective area of the wave conception.
This supports the reliability of our experimental method and setup.
The proof of the equality is rather extensive and omitted here to save space. It can be found in the
addendum of this book.

In view of the spatial conditions and the power of the transmitting antenna one can calculate the angular
momentum and consequently the torsional moment D1 which will be transfered from the photons of the
antenna onto the disc.
We start with formula 2.2 for the angular momentum which is carried to the disc by the photons in time
t:

I1 =
L

2πν
· t ·A

In our case A is the area of the small scattering disc. For the torsional moment follows therefore (because
of the constant radiation with respect to time as given in our experiment) from formula 2.3:

D1 =
dI1
dt

=
I1
t

=
L ·A
2πν

(4.1)
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4.1.2 Angular momentum of the scattered radiation
In order to calculate the angular momentum I2 of the scattered radiation one must know the spin di-
rection and the degree of polarization of the forward and backward scattered photons. We will discuss
the rotational directions respectively spin momentum of the photons coming from the antenna and those
scattered by the disc.
Let the radiation transmitted by the antenna be σ+.
Then it holds that the backward scattered radiation has the opposite polarization σ−. Consequently the
spin directions of the incident and the backward scattered radiation are the same in projection on the
antenna axis just as with normal reflection (see Fig. 4.1 and chapter 2).

Figure 4.1: Polarization of the scattered radiation

The polarization of the forward scattering wave on the contrary remains unchanged with respect to the
polarization of the incident radiation (see chapter 2). Consequently the spin orientation of the forward
radiated photons in projection on the antenna axis is the same as the spin orientation of the incident and
backward scattered photons in projection on the antenna axis.
Analogous considerations hold for a σ−-radiation coming from the antenna.
In general it holds:
The spin orientation in projection to the transmitting antenna axis of all involved photons is the same!
In order to calculate the angular momentum I2 one consequently must determine the spin projections
on the antenna axis of all scattered photons and weight them with their intensity and their degree of
polarization.
This calculation is rather complicated and extensive and can be found in the addendum of this book.
The result is

I2 =
3

16

LA

πν
· t (4.2)
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respectively

D2 =
3

16

LA

πν
(4.3)

for the corresponding torsional moment.

4.1.3 Resulting angular momentum of the disc
For the resulting angular momentum I on the disc caused by the incident wave from the antenna less the
angular momentum of the scattered photons it holds:

I = I1 − I2 =
LA

2πν
· t− 3

16

LA

πν
· t

Correspondingly there acts the torsional momentD1 on the aluminum disc caused by the incident photons
from the antenna minus the torsional moment D2 associated with the scattered photons. Hence the
resulting torsional moment D of the disc is:

D = D1 −D2 =
LA

2πν
− 3

16

LA

πν

or

total torsional moment on the discD = 5
8 ·

LA
2πν (4.4)

Annotation:
The experimental method of the measurement of the photon spin by transfer of angular momentum onto
a disc floating on water turned out as the only practical method for measuring the spin of radio wave
photons. All other methods turned out to be either too accident-sensitive or too unsensitive. Especially
thread suspensions were extremly fluttering and not useful. A summary of the diverse tentative methods
will be given in chapter 9.

4.2 Rotation of the disc

4.2.1 Rotation of the disc under the condition of
idealized frictionless motion

For simplicity we begin with a frictionless supported disc.

The well known formula holds: D = Θ · ω̈ with the torsional moment D and the moment of inertia Θ of
the aluminum disc.
The integration done twice with the boundary conditions ω(0) = 0 and ω̇(0) = 0 (acceleration from
position at rest at time t = 0) gives:

ω(t) =
1

2

D

Θ
t2 (4.5)

Annotation:
This describes also the dynamical situation of a satellite transmitted circular polarized radiation (see
chapter 8)!

4.2.2 Rotation of the disc under the influence of
friction between water and disc

Previous to the description of our experiments we have to mention that the aluminum disc is situated
floating on water under the influence of the radiation of the radio waves to avoid static friction which
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(considering the very week torsional moment of our radiation) could avoid the start of the disc’s rotation.
(Fluids have no static sheer stress.) That means that even arbitrary small torsional moments can induce
a rotation of the disc.
Besides this there is only laminar friction, considering the small rotation velocities of the disc, meaning
that the friction respectively the torsional moment of the friction is proportional to the rotation velocity.

Determination of the frictional coefficient between water and disc
By means of a little tangential push (see experiment description 4.4.1) the disc is brought to a measurable
rotational velocity ω̇.
Subsequently the rotational velocity is recorded by measuring angle ω and time t.
This is a rotational motion whose velocity continually diminishes due to the torsional moment of the
friction −k · ω̇:

−k · ω̇ = Θ · ω̈

After integration done twice:

ω(t) =
ω̇0 ·Θ
k
− ω̇0 ·Θ

k
e−

k
Θ t (4.6)

with boundary conditions ω0 = 0 und ω̇0 := ω̇(0), so that the angular velocity has its maximum at time
t = 0.
This formula 4.6 cannot be resolved analytically for k, therefore we calculate numerically.
The necessary experimental data of ω(t) and t can be experimentally determined (see chapter 4.4, anal-
ysis).

Calculation of the rotational angle ω of the disc dependent on
time under the influence of torsional moment caused by the
circular polarized radio wave and the friction between disc and
water
It holds the differential equation:

Θ · ω̈ = D − k · ω̇ (4.7)

with Θ · ω̈ = rotation accelerating torsional moment
D = torsional moment caused by the radio wave
k · ω̇ = torsional moment caused by friction between disc and water

After integration done twice (see e.g. [11]) we get:

ω(t) =
DΘ

k2
e−

k
Θ (t) +

D

k
t− DΘ

k2
(4.8)

with boundary conditions ω(0) = 0 and ω̇(0) = 0.

4.2.3 Possible power loss of the scattered radiation
Not the whole radiation power incident on the disc will be reemitted as scattered radiation. Possible
losses are:

a). Ohmic loss (in form of heat)
This can be disregarded because the reflection respectively scattering ability of aluminum with
electromagnetic waves beyond infrared is close to 100%.
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b). Partial transparency
At first we will consider the 2m-wave. The part of the incident power that will penetrate the
disc is about 0.25% of the total incident power. Because of the skin effect the penetration depth
in aluminum is only 0.006mm. Due to the much greater thickness of the disc of 0.016mm there
is therefore a reduction of the current density of 5% for the penetrating radiation, and as the
radiation power is proportional to the current density squared there results a coupling of the
incident power to the scattered radiation by 99.75%. For the 70cm-wave this loss is even smaller
due to the higher frequency.

c). Direct reflection as defined by geometrical optics instead of scattering.
Due to the very small dimensions of the disc compared to the wave length (disc-diameter 0.09m
compared to wave length 2m with a relation 1 : 0.045 respectively to a wave length 0.7m with
a relation of 1 : 0.13) the disc scatters the incident radiation like an oscillating dipole system as
described in chapter 3.2.

d). Loss of power due to induction of rotation of the disc.
This would be possible if we had had a rotational movement of the disc in our experiments, which
however was not the case.
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4.3 Experimental setup
In principle the experimental setup consists of an antenna transmitting vertically downwards elliptically
respectively circularly polarized radiation on a small aluminum disc floating on water (see Fig. 4.2).

Figure 4.2: Schematic experimental setup
A possible angular momentum transfered by the circular polarized radiation can be recorded by the de-
flection of a laser beam at a mirror in the center of the aluminum disc (see Fig 4.3). With this one can
achieve a sufficient high resolution in measuring the rotational angle of the disc.
For the scattering disc there was used an aluminum foil of thickness 0.016mm, the diameter of the disc
is 9cm., the height of the edge 7mm. The disc has a mass of 0.35g.
In addition there is in the center of the disc the mirror with a mass of 0.5g, a breadth of 2cm and a height
of 1.7cm.
The electromagnetic wave of the downward transmitting antenna is reflected by the ground producing a
standing wave. For optimal reflection the ground has been covered additionally with an aluminum sheet
of 2.5m diameter and 1mm thickness.

The used antennas are on the one hand a 2m-X-Quad and on the other hand a 70cm-X-Quad of the firm
WiMo - Antennen und Electronik GmbH.
The former (see Fig. 4.2) with a gain of 10.5dBd, a length of 1.33m and 10 secondary elements.
The latter with a gain of 12.8dBd, a length of 1.13m and 14 secondary elements.
An X − Quad is a hybrid antenna consisting of an active quad-element-system, a reflector and a wave
guide system of directors equal to a cross-Yagi (see [13]).
The wave guided along the directors forms at the end of the antenna near the antenna axis an approxi-
mately plane wave in the manner of a directed radiation resembling an aperture-type-antenna ([3]).
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Figure 4.3: Scattering disc

On grounds of the analogy with the aperture-type-antenna the spacial criteria for the near- and far-field
hold likewise for our antenna, especially the criteria for the beginning of the far field region (see [14]).
The X − quads were suspended at an arm of 4m length. The experiments were carried through in part
in a hall and in part in the open air.
As transceiver we have used a Yeasu FT-7800E Transceiver with a power of 40W for the 70cm-wave re-
spectively 50W for the 2m-wave.
For the latter there was added an amplifier MICROSET 200SR with 200Watt output power (see Fig. 4.4
and 4.5).

Figure 4.4: Block diagramm

The power partition and the phase shifting in order to produce circular polarized radiation was accom-
plished by a special device manufactured by the firm WiMo.
The transmitting antenna was connected to the transceiver with a coaxial cable of type RG-213 FOAM
with very little loss in order to minimize the power loss at a cable length of 12m.
The standing wave ratio and the transmission power have been measured by two SWR/Watt-Meter of the
manufacturer Daiwa for both antennas of the Quad-system.

Figure 4.5: Electrical assembly

A precise impedance matching has been conducted directly at the elements of the antenna.
The scattering aluminum disc was in every case in the far field of the antennas.
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For the measurement of the field strength respectively power and the ellipticity of the radiated wave we
have used the E− and H−field measurement probes of the firm Schneider - Funk- und Fernmeldetechnik.
The aluminum disc lies floating on an about 3mm thick water film within a ceramic plate and is protected
against air movement by a transparent plastic dome (Fig. 4.6). It was possible to position the aluminum

Figure 4.6: Scattering disc with plastic dome

disc manually in the hall due to still air without drifting off during the measurement. In the open air
the absolut still positioning of the disc before covering it with the plastic dome was not possible due to
constant air movement. Hence the disc was provided with a central hole of about 3mm diameter and was
constrained against transversal movement by a vertical metall needle of 1mm diameter in the manner of
a roller bearing (but still floating on water). Hereby the determination of the friction coefficient of the
disc on water yielded in both cases the same results.
In order to prevent air convection within the dome by warming the air by light irradiation the experiments
took place either in the hall with low diffuse light or outside at night.
For damping against external commotions the whole assembly rested on foam plastic caps.
Concerning the distance between transmitting antenna and aluminum disc see the following chapter
„Analysis”.
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4.4 Analysis

4.4.1 Moment of inertia and coefficient of friction of
the aluminum disc

We determine at first the moment of inertia of the disc.
The disc on the whole is provided with a circular edge and a central mirror (see Fig. 4.7). Accordingly

Figure 4.7: Rotating metal disc with mirror

the moment of inertia Θ of the disc can be calculated as Θ = 4.9 · 10−7
[
kg m2

]
.

from the specific mass of the aluminum and the mass and dimensions of the mirror.
Next it is necessary to determine experimentally the friction coefficient k of the disc floating on water.
For this the disc with the mirror was brought to rotation and the rotational angle ω(t) of the free rotation
under the influence of friction was then measured depending on time.
The rotational angle was measured by observation of the laser beam reflected by the mirror. Hereby
the rotational velocity has to be chosen sufficiently low to be in the range of a laminar flow. The exact
movement is described by formula 4.6:

ω(t) =
ω̇0 ·Θ
k
− ω̇0 ·Θ

k
e−

k
Θ t
[
rad
]

In order to determine k we used an exponential regression based on the recorded data, see Fig. 4.8. For

Figure 4.8: Exponential regression, graph of ω(t)

− k
Θ = b follows the value −0, 117. Thus it holds

k = Θ · b = 0, 117 · 4.9 · 10−7 = 5, 7 · 10−8
[kg m2

sec

]
.
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4.4.2 Determination of the angular momentum
effective radiation power on the aluminum disc

Preliminary note 1: Investigation under far field conditions
Our investigation with the aluminum disc has to be carried through imperatively in the far field because
only there a measurement of a well-defined angular momentum of the disc under conditions of a correctly
orientated energy flux respectively photon flux is possible.
For the far field holds that the vectors of the E−field and the H−field are in phase and perpendicular to
each other.
For practical purposes the conditions for the far field given in the technical literature hold in good
approximation, especially those given for our type of antennas (see [3], [4], [14], [16] and [15]): R = 2L2/λ
Hereby R is the distance of the antenna to the boundary between near and far field (abbreviated far field
boundary), L is the maximal geometric dimension of the antenna (in the case of our antenna the length
of the antenna) and λ as usually the wave length.
Thus the far field begins in our case for the 70cm wave length antenna at about 3, 7m and for the 2m
wave length antenna at about 1, 7m.
Under those conditions the deviation from the ideal far field is very small, especially in the central region
of the main radiation lobe where all measurements were conducted. A good estimate of the deviation
from the ideal far field could be accomplished through our measurement of the standing wave over ground
as described in the section „Reflection at the ground, production of a standing wave”. We will exemplarily
discuss this for the 70cm wave (see Fig. 4.11).
There one can see that the deviation of the minimum (nodal point) of the time averaged energy density
of the E−field from the ideal value 0 is about 2%.
(The rotational effect of the electromagnetic wave on our metal disc is proportional to the square of the
effective electric field strength and consequently to the time averaged energy density at the plane of the
disc at the antinode of the E−field of the standing wave. See for that the legend of Fig. 4.11.)
A further estimate of the far field boundary used by us provides the following fact:
By measuring the effective E−field perpendicular to the disc along the antenna axis from ground to about
1.2m height we could show that this E−field is about 1/10 (one tenth) of the angular-momentum-effective
E−field in the plane of the disc perpendicular to the axis of the antenna. Considering the square of the
field strength as mentioned above there is a deviation from the ideal conditions (E−field strength in the
direction of the axis of the antenna = 0) in the range of 1%. In literature a deviation of 2% or less is
considered a good criterion for being in the far field.

Preliminary note 2: Investigation on polarized radiation.
Reduction to net circular polarized radiation.
Our antennas produce an elliptic polarized radiation with an ellipticity of about 3dB, that means that
the relation of the semi-minor axis to the semi-major axis of the ellipse specified by the electric field
vector in the plane perpendicular to the radiation direction is 0.7 : 1.
This is corresponding to the technical literature a very satisfying ellipticity (see [15]). The elliptic polar-
ized radiation can be seen as composed of a purely circular and a purely linear polarized wave.
For further measurement data we will only refer to the angular-momentum-active part of purely circular
polarized radiation.
The effective field strength of the circular polarized part corresponds to the semi-minor axis of the po-
larization ellipse and can be determined easily by measurement.
Accordingly the power of the circular polarized part of the wave is about 2/3 of the whole power of the
transmitted radiation.
See also the polarization ellipses of the 2m−wave in figure 4.9, their semi-minor axis corresponding to
the purely circular polarized part of the antenna radiation. There have been plotted on the one hand
the effective field strength of the electric field (in V/m) and on the other hand the effective field strength
of the magnetic field (in A/m) depending on their direction in the plane perpendicular to the radiation
direction. The circular polarized part corresponds to a circle plottet inside the ellipse.
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Figure 4.9: Polarization ellipses of the 2m−wave. Measurement of the direc-
tion dependence of the effective E− and H−field strengths.
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Helicity of the circular polarized radiation incident on the disc
(see 4.10)
With our setup the aluminum disc receives a radiation from above (from the antenna) and from below
(reflected from the ground). It is important that the helicity of the reflected radiation changes compared
to the radiation coming from the antenna! If for instance the radiation coming from the antenna is σ+,
then the helicity of the reflected radiation is σ− (see Fig. 4.10). That means in the photon conception
that the spin orientation of the photons of the wave coming from above and below is the same.
Thus the photons of the radiation from above and below can give their angular momentum additionally
to the aluminum disc.

Figure 4.10: Addition of the angular momentum-effective radiation powers
of the waves coming from the antenna and from the wave reflected by the
ground. In the wave conception coincident rotational direction of the E−field
vectors of both waves, in the photon conception coincident spin directions of
both radiations.
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Reflection at the ground: Production of a standing wave
The radiation of the antenna is orientated perpendicular to the ground (see chapter 4.3 experimental
setup). The circular polarized radiation, which is incident perpendicular to the ground (respectively the
aluminum plate) is being reflected again as a circular polarized radiation.
Our aluminum disc has a very high reflectivity of nearly 100%. Therefrom by superposition of the
downward and upward directed waves there is generated an almost ideal circular polarized standing wave
near ground.

Figure 4.11: The circular polarized standing wave over ground (wave length
68cm). Effective E−field strength and time-averaged energy density of the
E−field as a function of the height above ground respectively the metal
sheet. (On the left one can see well the basic function of the absolute
value of a sine.) Generally it holds for the time-averaged energy density
W of the E−field of a plane linear polarized wave: W = 1/2 · ε0 · E2

eff .
In the case of a circular polarized wave there is an additional factor 2:
W = ε0 ·E2

eff (Height of the antenna above ground 5m, power of the trans-
mitter 40W , frequency 440MHz)

This can be measured easily passing through the field near ground upward with an E−field-test-probe
respectively by rotating the test-probe in the different planes parallel to the ground (see Fig. 4.11).
„Near ground” means in our case the altitude range of 1.25m for the 70cm-wave and of 1.75m for the
2m-wave with respect to the ground.
Closer to the antenna the quality of the standing wave decreases because there the strong wave from the
antenna meets the lower intensity of the reflected wave from the ground.
For the 70cm-wave the antinode of the E−field respectively the node of theH−field are at 5/4λ = 87, 5cm
above ground. We measured the E−field at this height.
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For the 2m-wave the antinodes of the H−field respectively of the E−field are at 100cm respectively 50cm
above ground. We measured the E−field and the H−field at this heights.
(Because of the fine-tuning necessary for optimization of the antenna power the exact function parameters
of the antennas are slightly shifted with respect to the standard values of the wave lengths of 70cm and
2m. This is especially indicated in Fig. 4.11 and chapter 5).
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From the measurement of the field strengths to the
determination of the angular momentum -effective radiation
power incident on the aluminum disc
With our E−field strength test probe the effective field strength in the planes parallel to the metall disc
was being measured.
Because of the standing circular polarized wave we measured in the antinode of the E−field in every
direction the same effective field strength.
The H−field here is negligible low, see hereto 4.4.2, preliminary note 1.
The measured effective field strength Em arises from the superposition of the effective field strengths Ea
of the wave coming from the antenna and the effective field strength Eb of the wave reflected from the
ground.
Because near ground there is a superposition of the E−field vectors in phase, and due to Ea and Eb
having equal strength, the measured field strength Em is twice the field strengths of Ea and Eb, thus it
holds: Ea = Eb = 1

2Em
The time averaged power of the radiation causing the angular momentum of the disc cannot be determined
by one Poynting vector because the standing wave arises from two waves moving in opposite directions
(see [8]).
It is rather necessary to formulate the Poynting vectors of both waves moving in opposite directions
separately to calculate the power density delivered to the disc and to add those afterwards.
For an electromagnetic wave generally holds for the Poynting vector: ~S = ~E × ~H
In the special case of a linear polarized wave under far field conditions there is

|~S| = S = E2/Z0 = H2 · Z0

with the time averaged power densitiy S and the effective field strengths E and H.
Hereby Z0 is the characteristic wave impedance of the vacuum.
We now determine the angular-momentum-effective power density L of the radiation onto the disc.
To begin with we measure in an antinode of the E−field the effective strength Em of the E−field of a
normally linear polarized standing wave. (Since here the H−field has a node, the whole energy is in the
E−field.)
The measured E−field strength is the additive supoerposition of the waves coming from above (Ea) and
below (Eb), each of them having consequently only half the field strength of Em, hence: Ea = Eb = 1

2Em
(as mentioned above).
Each of both waves has the power density L = E2

Z0
(Z0 = 377Ω = characteristic wave impedance of the

vacuum)
Both waves together consequently deliver a power density of

L =
E2
a

Z0
+
E2
b

Z0
=

1

4

E2
m

Z0
+

1

4

E2
m

Z0
=

1

2

E2
m

Z0
.

Now in our case we have two pairs of linear polarized waves, each pair forming a circular polarized wave
coming from above and from below generating a standing circular polarized wave.
Based on the fact of the equal magnitude of the resultant field strengths of each pair we finally get the
power density

L =
E2
m

Z0
. (4.9)

Analogically it holds for L at the antinode of the H-field:

L = H2
m · Z0 (4.10)
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5 Compilation of the angular
momentum effective
radiation power density on
the aluminum disc of two
diverse radio antennas
(wave length 2m and 0.7m)

At first the measurement results of the effective field strengths of the circular polarized wave at the
respective antinodes are specified. From this according to formulas 4.9 and 4.10 the angular-momentum-
effective power densities can be calculated.
See also preliminary note 2 of chapter 4.4.2.

1. For the „70cm” antenna holds:
wave length λ = 68cm, frequency 441, 2MHz

far field boundary at 3.7m

a) height of the antenna above ground: 5m
height of the aluminum disc above ground: 85cm
effective strength of the E−field at the antinode at 85cm height: (5/4λ): 15.1V/m
Therefrom we get an angular-momentum-effective power density L = 0.6 W/m2.

2. For the „2m” antenna holds:
wave length λ = 210cm, frequency 144, 1MHz
far field boundary at 1, 7m

a) height of the antenna above ground: 4.5m
height of the aluminum disc above ground: 53cm
effective field strength of the E−field at the antinode at 53cm height: 28V/m
Therefrom we get an angular-momentum-effective power density L = 2.1 W/m2.

b) height of the antenna above ground: 4.5m
height of the aluminum disc above ground: 1.05m
effective field strength of the H−field at the antinode at 105cm height: 0.071A/m
Therefrom we get an angular-momentum-effective power density L = 2.0 W/m2.

c) height of the antenna above ground: 3m
height of the aluminum disc above ground: 53cm
effective field strength of the E−field at the antinode at 53cm height: 31.6V/m
Therefrom we get an angular-momentum-effective power density L = 2.7 W/m2.

24



d) height of the antenna above ground: 3m
height of the aluminum disc above ground: 1.05m
effective field strength of the H−field at the antinode at 105cm height: 0, 092A/m
Therefrom we get an angular-momentum-effective power density L = 3.2 W/m2.
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6 Calculation of the rotation
angle ω of the disc under
the assumption of photon
spin h/2π

Now all experimentally determined parameters are available for the calculation of ω.
The basis of the calculation constitute the formulas 4.8, 12.4, 4.9 and 4.10:

• ω(t) = DΘ
k2 e

− k
Θ (t) + D

k t−
DΘ
k2

• Total torsional moment D = 5
8 ·

LA
2πν

• L =
E2
m

Z0

• L = H2
m · Z0

The parameters are:

• Moment of inertia of the aluminum disc: Θ = 4.9 · 10−7 kg m2

• Area of the disc: A = 6, 4 · 10−3 m2

• Friction coefficient between disc and water: k = 5, 7 · 10−8 kg m
2

sec

• Radiation time t = 360sec

We list the results according to chapter 5:

1. For the 70cm-wave holds:

a) ν = 441, 2 MHz, L = 0, 6 W
m2 , D = 8, 66 · 10−13 kg m2

⇒ Rotation after 360 seconds:
ω(360s) = 0, 0053 rad = 0, 3◦

This corresponds in our case to a deflection of the laser beam of 5.3cm ·2 = 10.6cm (factor
2 because of the reflection of the laser beam from the mirror).
(Length of the laser beam in each case normalized to 10m.)

2. For the 2m-wave holds:

(a) und (b)
ν = 144, 125 MHz, L = 2.05 W

m2 (average),
D = 9, 06 · 10−12 kg m2

⇒ Rotation after 360 seconds:
ω(360s) = 0, 0558 rad = 3, 2◦

This corresponds in our case to a deflection of the laser
beam of 55, 8cm · 2 = 111, 6cm (factor 2 because of the
reflection of the laser beam from the mirror).
(Length of the laser beam in each case normalized to
10m.)
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(c) und (d)
ν = 144, 125 MHz, L = 3, 0 W

m2 (average),
D = 1, 33 · 10−11 kg m2

⇒ Rotation after 360 seconds:
ω(360s) = 0, 082 rad = 4, 7◦

This corresponds in our case to a deflection of the laser
beam of 81, 7cm · 2 = 163, 4cm (factor 2 because of the
reflection of the laser beam from the mirror).
(Length of the laser beam in each case normalized to
10m.)
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7 Experimental determination
of the rotation angle ω of
the aluminum disc

Basis for our measurements are the experimental setup for the angular momentum effective power density
and the physical parameters as described in chapter 4 and chapter 6.

Again we specify the deflection of the laser beam normalized to 10m length of the laser beam and we
give the rotational angle ω in angular degrees.
Furthermore there is to account for the deflection of the laser beam at the mirror which doubles the
rotational angle with respect to the rotation angle of the disc.

1. For the 70cm antenna at 5m height above ground there results averaged from 7 separate mea-
surements a deflection of the laser beam of 0.2 cm.
This corresponds to a rotation angle of the disc of
ω = 0.011◦ · 1

2 = 0.0055◦

with a standard deviation σ = 0.21◦ · 1
2 = 0.11◦.

(Separate measurements are listet within the addendum.)

2. For the 2m antenna at 4.5m height above ground there results averaged from 6 separate mea-
surements a deflection of the laser beam of 0.4 cm.
This corresponds to a rotation angle of the disc of
ω = 0.022◦ · 1

2 = 0.011◦

with a standard deviation σ = 0.27◦ · 1
2 = 0.14◦.

(Separate measurements are listet within the addendum.)

3. For the 2m antenna at 3m height above ground there results averaged from 25 separate measure-
ments a deflection of the laser beam of 0.5 cm.
This corresponds to a rotation angle of the disc of
ω = 0.027◦ · 1

2 = 0.014◦

with a standard deviation σ = 0.42◦ · 1
2 = 0.21◦.

(Separate measurements are listet within the addendum.)
Especially for the purpose of a very exact statistic in this case there has been conducted a large
number of measurements.

In doing so we have used the conventional standard deviation σ =
√

1
n

∑
(xi − x̄)2.

To mention it briefly we annotate that a measurement value lies with about 68% probability in the range
between −σ and +σ and with a probability of about 95% in the range of −2σ to +2σ.
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In summary this means:

1. 70cm−antenna at 5m height:
Calculated deflection of the 10m laser beam provided that a photon spin of h/2π exists: 10.6cm
Measured deflection: 0.2cm± 4cm

2. 2m−antenna at 4.5m height:
Calculated deflection of the 10m laser beam provided that a photon spin of h/2π exists: 111.6cm
Measured deflection: 0.4cm± 5cm

3. 2m−antenna at 3m height:
Calculated deflection of the 10m laser beam provided that a photon spin of h/2π exists: 163.4cm
Measured deflection: 0.5cm± 7cm

From this follows:

For the photons with frequency 144MHz and 440MHz respectively the wave lengths 70cm and 2m there
is no photon spin of magnitude h/2π detectable!
More generally:

On low energy photons in the radio wave range there is no photon spin of magnitude h/2π
detectable. Especially the experiments with the larger 2m−wave show that the photon

spin (if existent) must be far below the magnitude h/2π.
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8 The radiation of satellite
antennas and its influence
on the attitude dynamics of
satellites

The motion of the satellites is described by global orbital dynamics and local attitude dynamics, the
latter being generally spoken a description of the diverse angular momentums respectively torques which
act on satellites.
Such torsional moments are very interesting to us because satellites are often equiped with circular po-
larized transmitting antennas. Consequently, if the satellite transmits a circular polarized radio wave,
there should be a measurable torsional moment onto the satellite caused by the photon spin, if the spin
is indeed h/2π independent of the frequency (see chapter 2).
There are however many different kinds of origin for torsional moments on satellites which one has to
know to measure the torsional moment of a circular polarized transmitting antenna. For example there
are gravitation, radiation pressure (which may also cause a torsional moment on the satellite if the center
of mass is not on the transmitting axis), aerodynamic resistance, thermic deformations or solar wind.
However all of those are well known and are being measured and compensated for regularly.

For us now there arises the question: Have perturbing torques on satellites been caused by transmission
of circular polarized transmitting satellite antennas? And how big would those be with common trans-
mitting powers?
We first assume a circular polarized and approximatively unidirectional transmitting antenna with power
W = 100W .
Furthermore we assume a common frequency of 1GHz (L-band IEEE).
In this frequency range there are numerous circular polarized transmitting communication satellites.
Then the torque D of the antenna (see chapter 2) is D = W

2πν , hence in our case D = 1.5 · 10−8Nm.
With less but also common frequencies as for example 0.1GHz the perturbing torque even raises to
D = 1.5 · 10−7Nm.
Both these torques are within the limits of common measurement techniques on satellites and well de-
tectable, so they should have been detected in the past decades!
This becomes especially evident if one considers that e.g. the torsional moment caused by radiation
preassure from an off center transmitting antenna, which is about equally strong, is well known and has
been measured many times.
We’d also like to mention that those two perturbing torsional moments can hardly be mixed up, because
the torque vectors of the two are perpendicular to each other.

Summing up it holds that a torque on a circular polarized satellite antenna resulting from
a constant photon spin h/2π in any case would have attracted attention long ago. That
this didn’t happen is a further indication for the assumption of a frequency dependent

photon spin.
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9 Other kinds of experimental
setups

The experimental setup we have presented in chapter 4.3 was not the only and first one we tried for our
spin measurement. In fact it was the last one in a large series of experiments of which all preceding ones
had turned out to be not practicable or possible in the framework of our financial possibilities.
We will present some of those setups here briefly.
The whole discussion can be read in our original German book or can be requested from the authors.

9.1 Measurement of angular momentum
directly on an actively circularly emitting
antenna

Our first experimental setup was composed of an X − Quad suspended by a thin thread which was fed
through very thin coaxial cables. Unfortunately the warming of the cables by electric current caused a
random, incalculable disturbing torque on the antenna.
Thus we decided to mount a high capacity battery directly at the axis of the antenna. But the relation
of transmitting power to the moment of inertia of the whole system combined with the instable thread
suspension proved too unresponsive.
These problems could possibly be alleviated by a specially designed and constructed battery-powered
transmitting system.

9.2 Measurement of angular momentum on
a radiation absorbing disc

Next we tried to measure the angular momentum respectively torque on a radiation absorbing plate which
was irradiated with a circular polarized radio wave.
The plate was made of absorption tiles Eccosorb of the firm Emerson und Cuming, USA and was suspended
below the transmitting antenna.
The moment of inertia of the very heavy plate however proved to be too high for sensible experimental
conditions.
This problem could possibly be alleviated by much higher transmitting powers.

9.3 Measurement of angular momentum on
a thin metal disc by generation of
circular polarized radiation by reflection

Under oblique incidence on a metal surface (see [1], [7] and [8]) a linear polarized wave with inclined
polarization plane will be reflected partially circular polarized. A metal reflection disc thus should receive
an angular momentum equal to that of the photons of the circular polarized reflected wave.
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This offers the possibility to use a thin and lightweight metal disc instead of the heavy absorption tiles.
In order to get approximately ideal reflection conditions the reflection plane must be greater than the
wave length.
We therefore laid a large-area wire mesh on the ground and placed closely above that an aluminum disc
suspended by a thread. Thus the metal disc and metal wires formed an almost homogenous plane without
edge radiation respectively scattering by the metal disc.
The disc diameter was 60cm and the antenna we used was a linear polarized transmitting antenna with
6m wave length of the firm HyGain, USA, the huge dimensions however being a difficult experimental
setup.
Unfortunately we had to realize that the accuracy of measurement was not satisfying.
However we could never find any evidence of an angular momentum transmitted to the disc.

9.4 Measurement of angular momentum on
satellites by circular polarized emitting
satellite antennas

As described in chapter 8, a measurement of the angular momentum of a specifically designed satellite with
a high energy circular polarized transmitting antenna would be a very effective experiment. Apparently
this would be very expensive, too.
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10 Abstract
1. Our intention was to measure the spin of very low energy photons.

Therefore we had to use the photons of radio waves and to rely on macroscopic measurements
of the spin. This means the transfer of the photon spin of a beam of polarized photons to a
macroscopic object.
Our experiment concentrated on low energy photons of radio waves with 2.0m and 0.7m wave
lengths. The transference of the angular momentum of the photons onto a small thin metal disc
was accomplished by scattering of radio waves incident on the disc.
The radio waves were circular polarized corresponding to polarized photons in the photon con-
ception.
Result:
On low energy photons in the range of radio waves there is no photon spin of magnitude h/2π
detectable.
Especially the experiments with the 2m-wave indicate that the photon spin at these wave lengths
(if existent) is far below the value of h/2π.

2. The radiation of the transmitting antennas of satellites radiating circular polarized waves and
their influence on the attitude dynamics has been analyzed.
If the spin of the radiated photons is frequency independent, perturbing torques on the satellites
should have been detected.
Result:
No perturbing torques of this origin have been found even though these should be well accessible
to common satellite measurement techniques.
This fact is a further indication for the assumption of a frequency dependent photon spin.
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11 Addendum 1: Test records
All data refer to the deviation of the laser beam in meters standardized to 1m radius. (This corresponds
at the same time to the double angle of rotation of the aluminum disc in radian measure.)
In addition the corresponding standard deviation σ is indicated.

• Measurement at 2m wave length with an antenna height of 3m:

0,0050 0
0,0043 0,0029
-0,0070 0

0 0,0045
0,0050 0,0050
-0,0040 -0,0150
-0,0120 0
-0,0067 0
-0,0070 0,0100
-0,002 -0,0110

-0,0130 0,0150
0,0090 0,0010
0,0040

⇒ arithmetic mean: 0, 0005± 0, 0074

• Measurement at 2m wave length with an antenna height of 4.5m:

-0,0008
0,0050
0,0025
-0,0100
-0,0010
0,0020

⇒ arithmetic mean: 0, 0004± 0, 0048

• Measurement at 70cm wave length with an antenna height of 5m:

0
0,0050
-0,0083

0
0
0

0,0020

⇒ arithmetic mean: 0, 0002± 0, 0037
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12 Addendum 2

12.1 Calculation of the angular momentum
of the scattered radiation and the
associated reactive opposed angular
momentum respectively torsional
moment of the scattering disc

To begin with, it should be stressed once more that our experiments and considerations deal with the real
photons in the far field. The polarization degree of the dipole radiation depends on the angle of radiation.
Correspondingly in the photon conception the spin of the scattered radiation varies with respect to the
direction of radiation respectively the angle of radiation.
To sum up, in order to calculate the torsional moment onto the disc in the direction of the transmitting
axis effected by the whole scattered radiation one has to determine the intensity of the scattered radiation
depending on the angle of radiation, to weight this with its respective polarization degree, to project the
resulting angular momentum of the individual rays on the transmitting axis and to integrate this angular
momentum over the whole sphere.
The scattered radiation in projection on the plane of the metal disc is rotationally symmetric to the
transmitting axis because the radiation can be represented by the superposition of two 90◦-phase-delayed
transmitting dipoles perpendicular to each other.
Now we apply the well known Poynting vector formalism ~S = ~E × ~H.
Let ~S be the standard time dependent Poynting vector. We will use from now on a time-averaged Poynt-
ing vector ~S := 1

T

∫ T
0
~S dt = 1

2 · ~S0. Hereby ~S0 is the peak value of ~S.
As especially measurements of power and torsional moment respectively angular momentum refer to the
time-averaged value in current practice we will further on use only this time-averaged value Poynting
vector.
The calculation is carried through as usual for a sufficiently large radius R under far-field conditions, so
that ~E and ~H are orthogonal to each other and ~S is perpendicular to the surface of the sphere defined
by R (see Fig. 12.1).
The absolute value of the Poynting vector of dipole I is maximal if orthogonal to the dipole, diminishes
with smaller α and vanishes at last along the dipoles axis with α = 0.
We name the maximal absolute value of the time-averaged Poynting vector ~S1 of the dipole antenna I
(orthogonal to the dipole axis) Smax,1.
Then holds: |~S1| = Smax,1 · sin2 α
Since the field strength varies according to the well known formula for the radiation pattern of the dipole
with sinα, the magnitude of the vector ~S varies with sin2 α, see [1], [8] or [9]).
By analogy we name the maximal absolute value of the time-averaged Poynting vector of the dipole
antenna II (orthogonal to the dipole axis) Smax,2.

In our case of two orthogonally crossed dipole antennas we consider at first as a special case those two
Poyinting vectors of dipoles I and II which are at right angles to the plane defined by the two dipoles
and overlap with the transmitting axis.
Here the magnitudes of those Poynting vectors add directly leading to the twofold radiation power density
compared to the solitary dipole antennas.
We now have to determine the time-averaged Poynting vector |~Sges| of both antennas respectively the
radiation power density of the dipole system for an arbitrary direction of radiation.
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Let ~Sges be the total averaged radiation energy flux density respectively radiation power density in the
direction of ~S.
We consider at first only the coloured plane in 12.1 orthogonal to dipole II along dipole I.
Here the magnitude of the total time-averaged Poynting vector is composed of the magnitudes of the
time-averaged Poynting vectors of both antennas in the following manner:

|~Sges| = Smax,1 sin2 α+ Smax,2

This consideration holds true for the coloured plane but beyond that due to the rotational radiation
symmetry of the dipole system with regard to the transmitting axis and due to Smax,1 = Smax,2 := S∗

for all other directions likewise:

|~Sges| = S∗ sin2 α+ S∗ (12.1)

As one can immediately see this formula yields the right results for the special cases α = 0◦ and α = 90◦.

In order to determine the total radiated power W of the dipole system over the whole sphere one has to
integrate the radiation enery flux density ~S over the whole sphere with radius R:

W =

∮
K

(S∗ sin2 α+ S∗)dA = S∗

π
2∫

α=−π2

2π∫
φ=0

(sin2 α+ 1) cosα R2dφ dα

= S∗ · 2πR2

π
2∫

α=−π2

(sin2 α+ 1) cosα dα

= 2πR2S∗
[
(sinα+

1

3
sin3 α)

]π
2

α=−π2

= 2πR2S∗
(

1 +
1

3
− (−1− 1

3
)
)

= 2πR2S∗
(

2 +
2

3

)
=

16πR2

3
S∗

(12.2)

On the other hand in the photon conception the photon flux density ~PS into the direction ~S is proportional
to the energy flux density |~S|, thus it holds ~PS = konst. · ~S.
Because of konst. = 1

hν (see chapter 2, p = L/hν) it holds

~PS =
1

hν
· ~S.

Finally we have to calculate the circular polarized portion of the radiation.
Here one has to regard that the radiation which is radiated orthogonal to both dipoles is totally circular
polarized (polarization degree 1) and that the radiation delivered in the plane defined by both dipoles
has no circular polarized part (polarization degree 0). With growing angle α the deree of polarization
increases.
We inspect once more exemplary the coloured plane of Fig. 12.1.
In order to derive the flux density of the angular momentum created by the photons from the photon
flux density |~PS | one has to adjust |~PS | by the factor sin2 α, since dipole I is only circular polarizing by
that factor (see fig. 12.1).
On the whole the minor contribution of the power density S∗ sin2 α of the dipole I determines half of
the angular momentum active photon flux density. The other half is contributed by part of the dipole II
radiation.
The residual radiation of the dipole II into the considered direction remains as linear polarized radiation
without any contribution to the angular momentum.
Thus it holds

|~pS | =
1

hν
· 2S∗ sin2 α
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Figure 12.1: Construction of the polarization ellipse from field strength ~E1 of dipole I and field
strength ~E2 of dipole II. ~E1 and ~E2 are 90◦ phase-delayed. The inscribed polarization circle, which
determines the circular polarization of ~S stems from ~E1 and ~E∗2 = ~E2 · | ~E1|/| ~E2|, which are accordingly
90◦ phase-delayed. The vector ~E∗2 is part of ~E2, leaving the rest of ~E2 for the linear polarized part of the
radiation of ~S.

with ~pS := angular momentum active photon flux density into direction ~S.

Finally one has to take into account that only the component of the angular momentum along the
transmitting axis contributes to the resultant total angular momentum of the disc. Those components
orthogonal to the transmitting axis extinguish mutually because of the radiation symmetry.
Let ~jS be the angular momentum flux density into the direction ~S. Then it holds: ~jS = h

2π ~pS (see chapter
2).
Hence:

|~jS | =
h

2π
· 1

hν
· 2S∗ sin2 α =

1

2πν
· 2S∗ sin2 α

As mentioned above due to the rotation symmetry only the component into the direction of the trans-
mitting axis remains affective.
In order to determine this component there is to calculate the projection ~jS,A of ~jS onto the transmitting
axis ~A.
It holds:

|~jS,A| = |~jS | · | sinα|

Hence:

|~jS,A| =
1

2πν
· 2S∗| sinα|3

The total delivered angular momentum flux Jges to the disc into the direction of the transmitting axis is
therefore the following integral over the surface K of the sphere with radius R. (To notice is hereby that
the projections of the spin contributions onto the transmitting axis having the same direction on both
sides of the disc.) Therefore we integrate only over one half sphere and then double the value.
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Jges = 2 ·
∮
K/2

1

2πν
· 2S∗ sin3 α dA

=
2S∗

πν

π
2∫

α=0

2π∫
φ=0

sin3 α cosαR2 dφ dα

=
4S∗

ν
R2

π
2∫

α=0

sin3 α cosα dα

=
4S∗

ν
R2
[1

4
sin4 α

]π
2

α=0

=
S∗R2

ν
· 1 =

S∗R2

ν

Since the total angular momentum flux Jges of the scattered photons is equivalent to the angular mo-
mentum flux respectively torsional moment D2 radiated from the disc, it holds:

D2 =
S∗

ν
R2 (12.3)

12.2 Resulting torsional moment on the disc
All in all there acts on the disc the torsional moment D1 caused by the photons irradiated from the
antenna less the torsional moment D2 caused by the scattered photons.
Hence the resulting torsional moment on the disc is:

D = D1 −D2 =
LA

2πν
− S∗

ν
R2

Furthermore one has to keep in mind that the total power scattered from the disc equals the irradiated
radiation on the disc coming from the antenna (at least if one disregards the neglectible losses discribed
in chapter 4.2.3).
Therefore according to formula 12.2 one can express S∗ with the aid of L, for the total scattered power
W = 16π

3 S∗R2 equals the power LA incident from the antenna on the disc:

16π

3
R2S∗ = LA ⇒ S∗ =

3LA

16π

1

R2

Hence:

D =
LA

2πν
− 3LA

16πν
=
LA

2πν

(
1− 3

8

)
Consequently it holds:

resulting torsional momentD = 5
8 ·

LA
2πν (12.4)
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13 Addendum 3

13.1 Proof of the equality of the
geometrical area of the scattering disc
in the photon conception and the
effective area of the scattering disc in
the electromagnetic wave conception

In the photon conception the photon stream and consequently the photon power incident on the disc is
simply determined by the geometrical area of the disc. On the other hand there is the so called effective
area used in the electromagnetic wave conception of antenna theory.
The effective area is the virtual area of which the antenna takes out the power of the electromagnetic
wave.
In order to present an equivalent formulation of the scattering mechanism of both the photon and the
electromagnetic conception we therefore have to prove that the geometrical area and the effective area of
the disc are equal under the conditions of our experiment.
In the following we will derive the effective area of our disc by using solely the electromagnetic wave
theory.
Therefore we have to examine the conditions, under which the incident electromagnetic wave interacts
with the scattering metallic disc. To this end we calculate the resonant angular frequency ωR of the disc
by means of Thomson’s resonant-oscillation-formula:

ωR =
1√
L · C

with L = inductance
C = capacitance
ωR = resonant angular frequency 2πν.

This angular resonant frequency of our disc compared with the frequency of the incident radiation of
our transmitting antenna enables us to determine, which kind of scattering (Thomson- or resonance- or
Rayleigh-scattering) takes place with the oscillating conduction electrons of our metal disc.
From this we can derive the effective cross section of the individual oscillating electrons and by summing
them up we can determine the effective area of our disc.

Preliminary remarks on the determination of the inductance and
capacity of the aluminum disc
In the following we use for our calculations a square of aluminum foil with side lengths 8cm instead of
our round disc with diameter 9cm for simplification without loss of generality, thus the square and the
disc offer the same area to the incoming radiation.
Thus we regard the square as a very flat short metal strap having an alternating voltage UAC between
its end faces with angular frequency ωA (see fig. 4.3 and fig. 13.1).
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Figure 13.1: small metall strap

Hereby ωA is the angular frequency of the electromagnetic wave of our transmitting antenna.
The above mentioned voltage is caused by the electric field strength EAC which in its return is produced
by the incident wave coming from the antenna.
Hence UAC = EAC · l with l = length of the square.

Determination of the inductance L of the square
Treatises respectively textbooks on theoretical electromagnetism without reference to industrial devel-
opment and practice do not supply sufficient information on the inductance of a straight metal strap as
used in our experiment. So we had to refere to industrial technical knowledge. We use a formula used in
many technical applications given by Microchip Incorporated Technology 2003:

L = 0, 002l ·
[
ln
( 2l

w + t

)
+ 0, 50049 +

w + t

3l

]
[µH]

with w = width in cm
t = thickness in cm
l = length in cm.

Especially for our problem of the square it holds:
w = 8cm, t = 0, 0016cm and l = 8cm.
Therefrom it follows: L = 25nH
Another formula given by Mantaro Product Development Services, USA 2013, yields a very similar result.

Determination of the capacitance C of the square
As mentioned above the incident electromagnetic wave from the transmitting antenna induces an alter-
nating current in the square which is defined by the inductance and the capacitance of the square.
On the whole the square reacts in the manner of an oscillating antenna in the oscillating field of the
incoming wave.
In order to calculate the capacitance C of the square we begin with the calculation of the capacitance of
a straight wire with diameter and length equal to the thickness and length of the square, resembling a
center-fed linear dipole antena. The capacitance C (in free space) of our wire is

C =
πε0h

ln(h/r)
√

1/3
.

Hence C = 0.22 · 10−12F with
h = half length of the square respectively half length of the wire = 0.04m
r = half thickness of the square respectively half diameter of the wire = 0.008 · 10−3m (see [21]).
Herby we use

C =
πε0h

ln(h/r)
√

2d+l
2d+3l
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with d = gap between the inner terminals of the arms of the antenna and take the limit d → 0 for the
calculation of C.
We refere also to a corresponding approximation formula

C =
πε0h

ln(h/r)

given by [22].
The difference of his results to Gonschorek’s in the context of our investigation is as we will explain
below of negligible difference (factor 1.3), taking into account that the resonance angular frequency of
our square is proportional to 1/

√
C.

In the end our consideration on the capacitance of our square is governed simply by the question if the
resonance frequency of the square lies in the range of the Thomson scattering range. Both formulas yield
results clearly satisfying this condition.
Next we have to sum up such wires but with quadratic cross section side by side in order to get the
configuration of a square. (The capacitance of such edged wires can be calculated to Cq = 0.23 · 10−12F
taking the capacitance of round wires with the same cross section.)
The necessary number of such wires is s = l/d = 5 · 103.
Capacitances in parallel arrangement simply add up if the individual capacitances do not influence each
other. In our special case the sum of capacitances of our parallel oriented wires adjacent to each other must
be adjusted by the factor 1/2, because half of the lateral surfaces of the individual wires are neutralized
mutually by direct metallic contact.
Thus it holds for the total capacity of the square:

CT = s · Cq · 1/2 = 0.58 · 10−12F

with Cq = capacity of an individual wire.
(The relative contribution of the narrow end faces of the square to its total capacitance can be neglected
compared to its great total surface.)
Finally we have to take into consideration additional factors which influence the capacitance of our disc:
First the capacitance produced by the edges of the disc and second the relative permittivity of the water
film and the ceramic plate on which the disc is positioned.
The capacitance produced by the edges of the disc is some sort of capacitance „top loading” as it is called
in antenna engineering.
The relative permittivity εr of water and ceramic plate on the bottom side of the disc certainly cause an
important contribution to the capacitance of the disc.
All these contributions are characterized by the fact, that they increase additionally the whole capac-
itance of the disc. These factors are difficult to quantify, but it is not necessary to do this: Because
above all every increase of the capacitance of the disc respectively our square will decrease the resonance
frequency of the disc. In this way the resonance frequency will shift even more into the region of the
Thomson scattering as will be shown later.
Thus these influences on the capacitance will but strengthen our argument of the equality of the effective
and geometric area of the square which demands a resonance frequency in the Thomson scattering range.
In the following we therefore can take the value of C = 0.58 · 10−12F as a very reliable upper limit for
our further calculations.

Determination of the uper limit ωR of the angular resonance
frequency of the square
According to Thomsons formula the angular resonance frequency ωR = 1√

LC
(L = 25 · 10−9H and

C = 0.58 · 10−12F ) of our square is ωR = 263 · 106 1/sec.
In order to apply this result for the determination of the effective area Feff of our square we have to
compare the angular frequency ωA of the incident wave coming from the antenna with the resonance
frequency ωR of the square.
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From the scattering cross section to the the effective area of the
square and our aluminum disc
Let us inspect the conditions of scattering and the scattering cross section of the conduction electrons of
the metalic square. We refere to [12].
The scattering of the incident wave from our transmitting antenna by the conduction electrons of our
aluminum disc is governed by the Thomson scattering principle. In this case the frequency of the incom-
ing wave is much greater than the resonance frequency ωR of the square respectively the associated equal
frequency of the conduction electrons in the metal under condition of resonance.
In Thomson scattering the scattering cross sections σE of the individual conduction electrons oscillating
synchronously under the influence of the incoming wave with ωA are constant with respect to ωA and
ωR: σE = constE .
(In the ideal case for ωA >> ωR respectively for total free electrons without any restoring force there
holds the classical Thomson scattering cross section σ = 8π

3 R
2 with R = classical electron radius.

In our case the restoring force for the conduction electrons in the resonating square is negligible in con-
sideration of the very low resonance frequency ωR with ωR < ωA.
So we regard the conduction electrons of our square approximately as free in the context of our experi-
ment.)
It should be stressed that Thomson scattering does not depend on the dimension of our metal square but
only on its resonance frequency respectively its corresponding wave length, which can exceed many times
the dimension of the plate. This wave length has to be compared with the length of the incoming wave
to see if the Thomson scattering applies.

Now the total scattering cross section σT of a metal plate consists of the sum of the individual cross
sections σE of the oscillating conduction electrons of the plate.
So using the Thomson scattering we can represent the total scattering cross section σT of a scattering
metallic area by the formula σT = constT · geometrical area of the scattering disc Fgeometric.
Since σT in terms of electromagnetic antenna theory is the effective area Feff , we can write: Feff =
constT · Fgeometric.
This formula holds for all pairs of Feff and Fgeometric that obey the Thomson scattering condition.
We now have to determine the value of this constant.
If we know its value for some known geometric area F ∗geometric we have as well the value for every other
Fgeometric, for the constant is the same for all pairs of Feff and Fgeometric.
In order to obtain the value of this constant we hence refer to practical knowledge of antenna engineering
that holds for all well conducting metals.
We know by experience that with plane aerials (also known as flat top antennas) of dimensions much
greater than the wave length of the incoming wave our constant equals 1, for in this case the relation
Feff = Fgeometric is valid (see [3].)
Therefore Feff = Fgeometric is true for all metallic scattering plane aereas that obey the Thomson con-
dition.

Now let us return to our special problem, namely the scattering of the electromagnetic wave of our an-
tenna by our aluminum disc.
Here the angular frequency ωA of the incident wave is much greater than the resonance frequency ωR of
the square. In our case:
For the 2.1m-Antenna: ωA = 905 · 106 1/sec
For the 0.68m-Antenna: ωA = 2770 · 106 1/sec
For comparison: ωR ≤ 260 · 106 1/sec.
Therefore Feff = Fgeometric for our scattering square under the conditions of our experiment.

Now on grounds of above considerations we also see that in terms of Thomson scattering the small-
est dimension of the scattering metal plate is essential, not its shape.

So for our circular aluminum disc there holds the same condition: Feff = Fgeometric
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